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ABSTRACT

Diffusion models are a class of flexible generative models trained with an
approximation to the log-likelihood objective. However, most use cases of diffusion
models are not concerned with likelihoods, but instead with downstream objectives
such as human-perceived image quality or drug effectiveness. In this paper, we
investigate reinforcement learning methods for directly optimizing diffusion models
for such objectives. We describe how posing denoising as a multi-step decision-
making problem enables a class of policy gradient algorithms, which we refer
to as denoising diffusion policy optimization (DDPO), that are more effective
than alternative reward-weighted likelihood approaches. Empirically, DDPO can
adapt text-to-image diffusion models to objectives that are difficult to express via
prompting, such as image compressibility, and those derived from human feedback,
such as aesthetic quality. Finally, we show that DDPO can improve prompt-image
alignment using feedback from a vision-language model without the need for
additional data collection or human annotation. The project’s website can be found
at http://rl-diffusion.github.io.

1 INTRODUCTION

Diffusion probabilistic models (Sohl-Dickstein et al., 2015) have recently emerged as the de facto
standard for generative modeling in continuous domains. Their flexibility in representing complex,
high-dimensional distributions has led to the adoption of diffusion models in applications including
image and video synthesis (Ramesh et al., 2021; Saharia et al., 2022; Ho et al., 2022), drug and
material design (Xu et al., 2021; Xie et al., 2021; Schneuing et al., 2022), and continuous control
(Janner et al., 2022; Wang et al., 2022; Hansen-Estruch et al., 2023). The key idea behind diffusion
models is to iteratively transform a simple prior distribution into a target distribution by applying a
sequential denoising process. This procedure is conventionally motivated as a maximum likelihood
estimation problem, with the objective derived as a variational lower bound on the log-likelihood of
the training data.

However, most use cases of diffusion models are not directly concerned with likelihoods, but instead
with downstream objective such as human-perceived image quality or drug effectiveness. In this paper,
we consider the problem of training diffusion models to satisfy such objectives directly, as opposed to
matching a data distribution. This problem is challenging because exact likelihood computation with
diffusion models is intractable, making it difficult to apply many conventional reinforcement learning
(RL) algorithms. We instead propose to frame denoising as a multi-step decision-making task, using
the exact likelihoods at each denoising step in place of the approximate likelihoods induced by a full
denoising process. We present a policy gradient algorithm, which we refer to as denoising diffusion
policy optimization (DDPO), that can optimize a diffusion model for downstream tasks using only a
black-box reward function.

We apply our algorithm to the finetuning of large text-to-image diffusion models. Our initial evaluation
focuses on tasks that are difficult to specify via prompting, such as image compressibility, and those
derived from human feedback, such as aesthetic quality. However, because many reward functions
of interest are difficult to specify programmatically, finetuning procedures often rely on large-scale
human labeling efforts to obtain a reward signal (Ouyang et al., 2022). In the case of text-to-image
diffusion, we propose a method for replacing such labeling with feedback from a vision-language
model (VLM). Similar to RLAIF finetuning for language models (Bai et al., 2022b), the resulting
procedure allows for diffusion models to be adapted to reward functions that would otherwise require
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Compressibility: llama

Aesthetic Quality: rabbit

Prompt-Image Alignment: a raccoon washing dishes

Figure 1 (Reinforcement learning for diffusion models) We propose a reinforcement learning
algorithm, DDPO, for optimizing diffusion models on downstream objectives such as compressibility,
aesthetic quality, and prompt-image alignment as determined by vision-language models. Each row
shows a progression of samples for the same prompt and random seed over the course of training.

additional human annotations. We use this procedure to improve prompt-image alignment for unusual
subject-setting compositions.

Our contributions are as follows. We first present the derivation and conceptual motivation of DDPO.
We then document the design of various reward functions for text-to-image generation, ranging
from simple computations to workflows involving large VLMs, and demonstrate the effectiveness of
DDPO compared to alternative reward-weighted likelihood methods in these settings. Finally, we
demonstrate the generalization ability of our finetuning procedure to unseen prompts.

2 RELATED WORK

Diffusion probabilistic models. Denoising diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020) have emerged as an effective class of generative models for modalities including
images (Ramesh et al., 2021; Saharia et al., 2022), videos (Ho et al., 2022; Singer et al., 2022), 3D
shapes (Zhou et al., 2021; Zeng et al., 2022), and robotic trajectories (Janner et al., 2022; Ajay et al.,
2022; Chi et al., 2023). While the denoising objective is conventionally derived as an approximation
to likelihood, the training of diffusion models typically departs from maximum likelihood in several
ways (Ho et al., 2020). Modifying the objective to more strictly optimize likelihood (Nichol &
Dhariwal, 2021; Kingma et al., 2021) often leads to worsened image quality, as likelihood is not
a faithful proxy for visual quality. In this paper, we show how diffusion models can be optimized
directly for downstream objectives.

Controllable generation with diffusion models. Recent progress in text-to-image diffusion mod-
els (Ramesh et al., 2021; Saharia et al., 2022) has enabled fine-grained high-resolution image synthesis.
To further improve the controllability and quality of diffusion models, recent approaches have in-
vestigated finetuning on limited user-provided data (Ruiz et al., 2022), optimizing text embeddings
for new concepts (Gal et al., 2022), composing models (Du et al., 2023; Liu et al., 2022), adapters
for additional input constraints (Zhang & Agrawala, 2023), and inference-time techniques such as
classifier (Dhariwal & Nichol, 2021) and classifier-free (Ho & Salimans, 2021) guidance.
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Reinforcement learning from human feedback. A number of works have studied using human
feedback to optimize models in settings such as simulated robotic control (Christiano et al., 2017),
game-playing (Knox & Stone, 2008), machine translation (Nguyen et al., 2017), citation retrieval
(Menick et al., 2022), browsing-based question-answering (Nakano et al., 2021), summarization
(Stiennon et al., 2020; Ziegler et al., 2019), instruction-following (Ouyang et al., 2022), and alignment
with specifications (Bai et al., 2022a). Recently, Lee et al. (2023) studied the alignment of text-to-
image diffusion models to human preferences using a method based on reward-weighted likelihood
maximization. In our comparisons, their method corresponds to one iteration of the RWR method.
Our results demonstrate that DDPO significantly outperforms even multiple iterations of weighted
likelihood maximization (RWR-style) optimization.

Diffusion models as sequential decision-making processes. Although predating diffusion models,
Bachman & Precup (2015) similarly posed data generation as a sequential decision-making problem
and used the resulting framework to apply reinforcement learning methods to image generation.
More recently, Fan & Lee (2023) introduced a policy gradient method for training diffusion models.
However, this paper aimed to improve data distribution matching rather than optimizing downstream
objectives, and therefore the only reward function considered was a GAN-like discriminator. In
concurrent work to ours, DPOK (Fan et al., 2023) built upon Fan & Lee (2023) and Lee et al. (2023)
to better align text-to-image diffusion models to human preferences using a policy gradient algorithm.
Like Lee et al. (2023), DPOK only considers a single preference-based reward function (Xu et al.,
2023); additionally, their work studies KL-regularization and primarily focuses on training a different
diffusion model for each prompt. 1 In contrast, we train on many prompts at once (up to 398) and
demonstrate generalization to many more prompts outside of the training set. Furthermore, we study
how DDPO can be applied to multiple reward functions beyond those based on human feedback,
including how rewards derived automatically from VLMs can improve prompt-image alignment.

3 PRELIMINARIES

In this section, we provide a brief background on diffusion models and the RL problem formulation.

3.1 DIFFUSION MODELS

In this work, we consider conditional diffusion probabilistic models (Sohl-Dickstein et al., 2015; Ho
et al., 2020), which represent a distribution p(x0|c) over a dataset of samples x0 and corresponding
contexts c. The distribution is modeled as the reverse of a Markovian forward process q(xt | xt−1),
which iteratively adds noise to the data. Reversing the forward process can be accomplished by
training a neural network µθ(xt, c, t) with the following objective:

LDDPM(θ) = E(x0,c)∼p(x0,c), t∼U{0,T}, xt∼q(xt|x0)

[
∥µ̃(x0, t)− µθ(xt, c, t)∥2

]
(1)

where µ̃ is the posterior mean of the forward process, a weighted average of x0 and xt. This objective
is justified as maximizing a variational lower bound on the log-likelihood of the data (Ho et al., 2020).

Sampling from a diffusion model begins with drawing a random xT ∼ N (0, I) and following the
reverse process pθ(xt−1 | xt, c) to produce a trajectory {xT ,xT−1, . . . ,x0} ending with a sample
x0. The sampling process depends not only on the predictor µθ but also the choice of sampler. Most
popular samplers (Ho et al., 2020; Song et al., 2021) use an isotropic Gaussian reverse process with a
fixed timestep-dependent variance:

pθ(xt−1 | xt, c) = N (xt−1 | µθ (xt, c, t) , σ
2
t I). (2)

3.2 MARKOV DECISION PROCESSES AND REINFORCEMENT LEARNING

A Markov decision process (MDP) is a formalization of sequential decision-making problems. An
MDP is defined by a tuple (S,A, ρ0, P,R), in which S is the state space, A is the action space, ρ0
is the distribution of initial states, P is the transition kernel, and R is the reward function. At each
timestep t, the agent observes a state st ∈ S, takes an action at ∈ A, receives a reward R(st,at),
and transitions to a new state st+1 ∼ P (st+1 | st,at). An agent acts according to a policy π(a | s).

1DPOK includes one multi-prompt experiment with four prompts, but the authors conclude that it does not
work as well as single-prompt training and do not provide qualitative results for that experiment.
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As the agent acts in the MDP, it produces trajectories, which are sequences of states and actions
τ = (s0,a0, s1,a1, . . . , sT ,aT ). The reinforcement learning (RL) objective is for the agent to
maximize JRL(π), the expected cumulative reward over trajectories sampled from its policy:

JRL(π) = Eτ∼p(τ |π)

[ ∑T
t=0 R(st,at)

]
.

4 REINFORCEMENT LEARNING TRAINING OF DIFFUSION MODELS

We now describe how RL algorithms can be used to train diffusion models. We present two classes
of methods and show that each corresponds to a different mapping of the denoising process to the
MDP framework.

4.1 PROBLEM STATEMENT

We assume a pre-existing diffusion model, which may be pretrained or randomly initialized. Assuming
a fixed sampler, the diffusion model induces a sample distribution pθ(x0 | c). The denoising diffusion
RL objective is to maximize a reward signal r defined on the samples and contexts:

JDDRL(θ) = Ec∼p(c), x0∼pθ(x0|c) [r(x0, c)]

for some context distribution p(c) of our choosing.

4.2 REWARD-WEIGHTED REGRESSION

To optimize JDDRL with minimal changes to standard diffusion model training, we can use the
denoising loss LDDPM (Equation 1), but with training data x0 ∼ pθ(x0 | c) and an added weighting
that depends on the reward r(x0, c). Lee et al. (2023) describe a single-round version of this procedure
for diffusion models, but in general this approach can be performed for multiple rounds of alternating
sampling and training, leading to an online RL method. We refer to this general class of algorithms
as reward-weighted regression (RWR) (Peters & Schaal, 2007).

A standard weighting scheme uses exponentiated rewards to ensure nonnegativity,

wRWR(x0, c) =
1

Z
exp

(
βr(x0, c)

)
,

where β is an inverse temperature and Z is a normalization constant. We also consider a simplified
weighting scheme that uses binary weights,

wsparse(x0, c) = 1
[
r(x0, c) ≥ C

]
,

where C is a reward threshold determining which samples are used for training. In supervised learning
terms, this is equivalent to repeated filtered finetuning on training data coming from the model.

Within the RL formalism, the RWR procedure corresponds to the following one-step MDP:

s ≜ c a ≜ x0 π(a | s) ≜ pθ(x0 | c) ρ0(s) ≜ p(c) R(s,a) ≜ r(x0, c)

with a transition kernel P that immediately leads to an absorbing termination state. Therefore,
maximizing JDDRL(θ) is equivalent to maximizing the RL objective JRL(π) in this MDP.

From RL literature, weighting a log-likelihood objective by wRWR is known to approximately max-
imize JRL(π) subject to a KL divergence constraint on π (Nair et al., 2020). However, LDDPM
(Equation 1) does not involve an exact log-likelihood — it is instead derived as a variational bound on
log pθ(x0 | c). Therefore, the RWR procedure applied to diffusion model training is not theoretically
justified and only optimizes JDDRL very approximately.

4.3 DENOISING DIFFUSION POLICY OPTIMIZATION

RWR relies on an approximate log-likelihood because it ignores the sequential nature of the denoising
process, only using the final samples x0. In this section, we show how the denoising process can
be reframed as a multi-step MDP, allowing us to directly optimize JDDRL using policy gradient
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estimators. This follows the derivation in Fan & Lee (2023), who prove an equivalence between their
method and a policy gradient algorithm where the reward is a GAN-like discriminator. We present a
general framework with an arbitrary reward function, motivated by our desire to optimize arbitrary
downstream objectives (Section 5). We refer to this class of algorithms as denoising diffusion policy
optimization (DDPO) and present two variants based on specific gradient estimators.

Denoising as a multi-step MDP. We map the iterative denoising procedure to the following MDP:

st ≜ (c, t,xt) π(at | st) ≜ pθ(xt−1 | xt, c) P (st+1 | st,at) ≜
(
δc, δt−1, δxt−1

)
at ≜ xt−1 ρ0(s0) ≜

(
p(c), δT ,N (0, I)

)
R(st,at) ≜

{
r(x0, c) if t = 0

0 otherwise

in which δy is the Dirac delta distribution with nonzero density only at y. Trajectories consist of T
timesteps, after which P leads to a termination state. The cumulative reward of each trajectory is
equal to r(x0, c), so maximizing JDDRL(θ) is equivalent to maximizing JRL(π) in this MDP.

The benefit of this formulation is that if we use a standard sampler with pθ(xt−1 | xt, c) parameterized
as in Equation 2, the policy π becomes an isotropic Gaussian as opposed to the arbitrarily complicated
distribution pθ(x0 | c) as it is in the RWR formulation. This simplification allows for the evaluation
of exact log-likelihoods and their gradients with respect to the diffusion model parameters.

Policy gradient estimation. With access to likelihoods and likelihood gradients, we can make direct
Monte Carlo estimates of ∇θJDDRL. Like RWR, DDPO alternates collecting denoising trajectories
{xT ,xT−1, . . . ,x0} via sampling and updating parameters via gradient descent.

The first variant of DDPO, which we call DDPOSF, uses the score function policy gradient estimator,
also known as the likelihood ratio method or REINFORCE (Williams, 1992; Mohamed et al., 2020):

∇θJDDRL = E

[
T∑

t=0

∇θ log pθ(xt−1 | xt, c) r(x0, c)

]
(DDPOSF)

where the expectation is taken over denoising trajectories generated by the current parameters θ.

However, this estimator only allows for one step of optimization per round of data collection, as the
gradient must be computed using data generated by the current parameters. To perform multiple steps
of optimization, we may use an importance sampling estimator (Kakade & Langford, 2002):

∇θJDDRL = E

[
T∑

t=0

pθ(xt−1 | xt, c)

pθold(xt−1 | xt, c)
∇θ log pθ(xt−1 | xt, c) r(x0, c)

]
(DDPOIS)

where the expectation is taken over denoising trajectories generated by the parameters θold. This
estimator becomes inaccurate if pθ deviates too far from pθold , which can be addressed using trust
regions (Schulman et al., 2015) to constrain the size of the update. In practice, we implement the
trust region via clipping, as in proximal policy optimization (Schulman et al., 2017).

5 REWARD FUNCTIONS FOR TEXT-TO-IMAGE DIFFUSION

In this work, we evaluate our methods on text-to-image diffusion. Text-to-image diffusion serves
as a valuable test environment for reinforcement learning due to the availability of large pretrained
models and the versatility of using diverse and visually interesting reward functions. In this section,
we outline our selection of reward functions. We study a spectrum of reward functions of varying
complexity, ranging from those that are straightforward to specify and evaluate to those that capture
the depth of real-world downstream tasks.

5.1 COMPRESSIBILITY AND INCOMPRESSIBILITY

The capabilities of text-to-image diffusion models are limited by the co-occurrences of text and
images in their training distribution. For instance, images are rarely captioned with their file size,
making it impossible to specify a desired file size via prompting. This limitation makes reward
functions based on file size a convenient case study: they are simple to compute, but not controllable
through the conventional methods of likelihood maximization and prompt engineering.

5



“a monkey is...”

BERTScore

“a monkey washing dishes...”

“what is happening 
in this image?” LLaVA

Diffusion
Model

similarity-based 
reward

Figure 2 (VLM reward function) Illustration of the VLM-based reward function for prompt-image
alignment. LLaVA (Liu et al., 2023) provides a short description of a generated image; the reward is
the similarity between this description and the original prompt as measured by BERTScore (Zhang
et al., 2020).

We fix the resolution of diffusion model samples at 512x512, such that the file size is determined
solely by the compressibility of the image. We define two tasks based on file size: compressibility,
in which the file size of the image after JPEG compression is minimized, and incompressibility, in
which the same measure is maximized.

5.2 AESTHETIC QUALITY

To capture a reward function that would be useful to a human user, we define a task based on
perceived aesthetic quality. We use the LAION aesthetics predictor (Schuhmann, 2022), which
is trained on 176,000 human image ratings. The predictor is implemented as a linear model on
top of CLIP embeddings (Radford et al., 2021). Annotations range between 1 and 10, with the
highest-rated images mostly containing artwork. Since the aesthetic quality predictor is trained on
human judgments, this task constitutes reinforcement learning from human feedback (Ouyang et al.,
2022; Christiano et al., 2017; Ziegler et al., 2019).

5.3 AUTOMATED PROMPT ALIGNMENT WITH VISION-LANGUAGE MODELS

A very general-purpose reward function for training a text-to-image model is prompt-image alignment.
However, specifying a reward that captures generic prompt alignment is difficult, conventionally
requiring large-scale human labeling efforts. We propose using an existing VLM to replace additional
human annotation. This design is inspired by recent work on RLAIF (Bai et al., 2022b), in which
language models are improved using feedback from themselves.

We use LLaVA (Liu et al., 2023), a state-of-the-art VLM, to describe an image. The finetuning
reward is the BERTScore (Zhang et al., 2020) recall metric, a measure of semantic similarity, using
the prompt as the reference sentence and the VLM description as the candidate sentence. Samples
that more faithfully include all of the details of the prompt receive higher rewards, to the extent that
those visual details are legible to the VLM.

In Figure 2, we show one simple question: “what is happening in this image?”. While this captures
the general task of prompt-image alignment, in principle any question could be used to specify
complex or hard-to-define reward functions for a particular use case. One could even employ a
language model to automatically generate candidate questions and evaluate responses based on the
prompt. This framework provides a flexible interface where the complexity of the reward function is
only limited by the capabilities of the vision and language models involved.

6 EXPERIMENTAL EVALUATION

The purpose of our experiments is to evaluate the effectiveness of RL algorithms for finetuning
diffusion models to align with a variety of user-specified objectives. After examining the viability of
the general approach, we focus on the following questions:

1. How do variants of DDPO compare to RWR and to each other?
2. Can VLMs allow for optimizing rewards that are difficult to specify manually?
3. Do the effects of RL finetuning generalize to prompts not seen during finetuning?
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Pretrained Aesthetic Quality

Compressibility Incompressibility

Figure 3 (DDPO samples) Qualitative depiction of the effects of RL finetuning on different reward
functions. DDPO transforms naturalistic images into stylized artwork to maximize aesthetic quality,
removes background content and applies foreground smoothing to maximize compressibility, and
adds high-frequency noise to maximize incompressibility.
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Figure 4 (Finetuning effectiveness) The relative effectiveness of different RL algorithms on three
reward functions. We find that the policy gradient variants, denoted DDPO, are more effective
optimizers than both RWR variants.

6.1 ALGORITHM COMPARISONS

We begin by evaluating all methods on the compressibility, incompressibility, and aesthetic quality
tasks, as these tasks isolate the effectiveness of the RL approach from considerations relating to the
VLM reward function. We use Stable Diffusion v1.4 (Rombach et al., 2022) as the base model for all
experiments. Compressibility and incompressibility prompts are sampled uniformly from all 398
animals in the ImageNet-1000 (Deng et al., 2009) categories. Aesthetic quality prompts are sampled
uniformly from a smaller set of 45 common animals.

As shown qualitatively in Figure 3, DDPO is able to effectively adapt a pretrained model with only
the specification of a reward function and without any further data curation. The strategies found to
optimize each reward are nontrivial; for example, to maximize LAION-predicted aesthetic quality,
DDPO transforms a model that produces naturalistic images into one that produces artistic drawings.
To maximize compressibility, DDPO removes backgrounds and applies smoothing to what remains.
To maximize incompressibility, DDPO finds artifacts that are difficult for the JPEG compression
algorithm to encode, such as high-frequency noise and sharp edges. Samples from RWR are provided
in Appendix E for comparison.
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Figure 5 (Prompt alignment) (L) Progression of samples for the same prompt and random seed over
the course of training. The images become significantly more faithful to the prompt. The samples also
adopt a cartoon-like style, which we hypothesize is because the prompts are more likely depicted as
illustrations than realistic photographs in the pretraining distribution. (R) Quantitative improvement
of prompt alignment. Each thick line is the average score for an activity, while the faint lines show
average scores for a few randomly selected individual prompts.

We provide a quantitative comparison of all methods in Figure 4. We plot the attained reward
as a function of the number of queries to the reward function, as reward evaluation becomes the
limiting factor in many practical applications. DDPO shows a clear advantage over RWR on all
tasks, demonstrating that formulating the denoising process as a multi-step MDP and estimating the
policy gradient directly is more effective than optimizing a reward-weighted variational bound on
log-likelihood. Within the DDPO class, the importance sampling estimator slightly outperforms the
score function estimator, likely due to the increased number of optimization steps. Within the RWR
class, the performance of weighting schemes is comparable, making the sparse weighting scheme
preferable on these tasks due to its simplicity and reduced resource requirements.

6.2 AUTOMATED PROMPT ALIGNMENT

We next evaluate the ability of VLMs, in conjunction with DDPO, to automatically improve the
image-prompt alignment of the pretrained model without additional human labels. We focus on
DDPOIS for this experiment, as we found it to be the most effective algorithm in Section 6.1. The
prompts for this task all have the form “a(n) [animal] [activity] ”, where the animal comes from
the same list of 45 common animals used in Section 6.1 and the activity is chosen from a list of 3
activities: “riding a bike”, “playing chess”, and “washing dishes”.

The progression of finetuning is depicted in Figure 5. Qualitatively, the samples come to depict the
prompts much more faithfully throughout the course of training. This trend is also reflected quanti-
tatively, though is less salient as small changes in BERTScore can correspond to large differences
in relevance (Zhang et al., 2020). It is important to note that some of the prompts in the finetuning
set, such as “a dolphin riding a bike”, had zero success rate from the pretrained model; if trained in
isolation, this prompt would be unlikely to ever improve because there would be no reward signal. It
was only via transferrable learning across prompts that these difficult prompts could improve.

Nearly all of the samples become more cartoon-like or artistic during finetuning. This was not
optimized for directly. We hypothesize that this is a function of the pretraining distribution; though it
would be extremely rare to see a photorealistic image of a bear washing dishes, it would be much less
unusual to see the scene depicted in a children’s book. As a result, in the process of satisfying the
content of the prompt, the style of the samples also changes.

8



Pr
et

ra
in

ed

Aesthetic Quality (New Animals) Aesthetic Quality (Non-Animals) Prompt Alignment (New Scenarios)

Fi
ne

tu
ne

d

Figure 6 (Generalization) Finetuning on a limited set of animals generalizes to both new animals
and non-animal everyday objects. The prompts for the rightmost two columns are “a capybara
washing dishes” and “a duck taking an exam”. A quantitative analysis is provided in Appendix D,
and more samples are provided in Appendix E.

6.3 GENERALIZATION

RL finetuning on large language models has been shown to produce interesting generalization
properties; for example, instruction finetuning almost entirely in English has been shown to improve
capabilities in other languages (Ouyang et al., 2022). It is difficult to reconcile this phenomenon
with our current understanding of generalization; it would a priori seem more likely for finetuning
to have an effect only on the finetuning prompt set or distribution. In order to investigate the
same phenomenon with diffusion models, Figure 6 shows a set of DDPO-finetuned model samples
corresponding to prompts that were not seen during finetuning. In concordance with instruction-
following transfer in language modeling, we find that the effects of finetuning do generalize, even
with prompt distributions as narrow as 45 animals and 3 activities. We find evidence of generalization
to animals outside of the training distribution, to non-animal everyday objects, and in the case of
prompt-image alignment, even to novel activities such as “taking an exam”.

7 DISCUSSION AND LIMITATIONS

We presented an RL-based framework for training denoising diffusion models to directly optimize
a variety of reward functions. By posing the iterative denoising procedure as a multi-step decision-
making problem, we were able to design a class of policy gradient algorithms that are highly effective
at training diffusion models. We found that DDPO was an effective optimizer for tasks that are difficult
to specify via prompts, such as image compressibility, and difficult to evaluate programmatically,
such as semantic alignment with prompts. To provide an automated way to derive rewards, we also
proposed a method for using VLMs to provide feedback on the quality of generated images. While our
evaluation considers a variety of prompts, the full range of images in our experiments was constrained
(e.g., animals performing activities). Future iterations could expand both the questions posed to the
VLM, possibly using language models to propose relevant questions based on the prompt, as well as
the diversity of the prompt distribution. We also chose not to study the problem of overoptimization,
a common issue with RL finetuning in which the model diverges too far from the original distribution
to be useful (see Appendix A); we highlight this as an important area for future work. We hope
that this work will provide a step toward more targeted training of large generative models, where
optimization via RL can produce models that are effective at achieving user-specified goals rather
than simply matching an entire data distribution.

Broader Impacts. Generative models can be valuable productivity aids, but may also pose harm
when used for disinformation, impersonation, or phishing. Our work aims to make diffusion models
more useful by enabling them to optimize user-specified objectives. This adaptation has beneficial
applications, such as the generation of more understandable educational material, but may also be
used maliciously, in ways that we do not outline here. Work on the reliable detection of synthetic
content remains important to mitigate such harms from generative models.
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APPENDIX A OVEROPTIMIZATION

Incompressibility

DDPODDPO

RWRRWR

Counting Animals

Figure 7 (Reward model overoptimization) Examples of RL overoptimizing reward functions.
(L) The diffusion model eventually loses all recognizable semantic content and produces noise when
optimizing for incompressibility. (R) When optimized for prompts of the form “n animals”, the
diffusion model exploits the VLM with a typographic attack (Goh et al., 2021), writing text that is
interpreted as the specified number n instead of generating the correct number of animals.

Section 6.1 highlights the optimization problem: given a reward function, how well can an RL
algorithm maximize that reward? However, finetuning on a reward function, especially a learned one,
has been observed to lead to reward overoptimization or exploitation (Gao et al., 2022) in which the
model achieves high reward while moving too far away from the pretraining distribution to be useful.

Our setting is no exception, and we provide two examples of reward exploitation in Figure 7.
When optimizing the incompressibility objective, the model eventually stops producing semantically
meaningful content, degenerating into high-frequency noise. Similarly, we observed that LLaVA is
susceptible to typographic attacks (Goh et al., 2021). When optimizing for alignment with respect to
prompts of the form “n animals”, DDPO exploited deficiencies in the VLM by instead generating
text loosely resembling the specified number: for example, “sixx ttutttas” above a picture of eight
turtles.

There is currently no general-purpose method for preventing overoptimization. One common strategy
is to add a KL-regularization term to the reward (Ouyang et al., 2022; Stiennon et al., 2020); we refer
the reader to the concurrent work of Fan et al. (2023) for a study of KL-regularization in the context of
finetuning text-to-image diffusion models. However, Gao et al. (2022) suggest that existing solutions,
including KL-regularization, may be empirically equivalent to early stopping. As a result, in this
work, we manually identified the last checkpoint before a model began to deteriorate for each method
and used that as the reference for qualitative results. We highlight this problem as an important area
for future work.

APPENDIX B IMPLEMENTATION DETAILS

For all experiments, we use Stable Diffusion v1.4 (Rombach et al., 2022) as the base model and
finetune only the UNet weights while keeping the text encoder and autoencoder weights frozen.

Note that our large-scale quantitative experiments contained a subtle bug2 in the implementation
of the aesthetic reward, causing the scale of the rewards to be slightly off and the resulting style
of images to be different. The quantitative comparisons in Figure 4 and Figure 9 use this incorrect
version. However, the same reward function is used for all methods and hence these plots faithfully
represent the relative ability of each method to optimize the reward function. Although we did
not re-run the quantitative comparisons, we expect the relative results to be the same. All of the
qualitative results use the fixed reward function.

2https://github.com/kvablack/ddpo-pytorch/issues/3#issuecomment-1634723127
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B.1 DDPO IMPLEMENTATION

We collect 256 samples per training iteration. For DDPOSF, we accumulate gradients across all 256
samples and perform one gradient update. For DDPOIS, we split the samples into 4 minibatches and
perform 4 gradient updates. Gradients are always accumulated across all denoising timesteps for
a single sample. For DDPOIS, we use the same clipped surrogate objective as in proximal policy
optimization (Schulman et al., 2017), but find that we need to use a very small clip range compared
to standard RL tasks. We use a clip range of 1e-4 for all experiments.

B.2 RWR IMPLEMENTATION

We compute the weights for a training iteration using the entire dataset of samples collected for that
training iteration. For wRWR, the weights are computed using the softmax function. For wsparse, we
use a percentile-based threshold, meaning C is dynamically selected such that the bottom p% of a
given pool of samples are discarded and the rest are used for training.

B.3 REWARD NORMALIZATION

In practice, rewards are rarely used as-is, but instead are normalized to have zero mean and unit
variance. Furthermore, this normalization can depend on the current state; in the policy gradient
context, this is analogous to a value function baseline (Sutton et al., 1999), and in the RWR context,
this is analogous to advantage-weighted regression (Peng et al., 2019). In our experiments, we
normalize the rewards on a per-context basis. For DDPO, this is implemented as normalization by a
running mean and standard deviation that is tracked for each prompt independently. For RWR, this is
implemented by computing the softmax over rewards for each prompt independently. For RWRsparse,
this is implemented by computing the percentile-based threshold C for each prompt independently.

B.4 RESOURCE DETAILS

RWR experiments were conducted on a v3-128 TPU pod, and took approximately 4 hours to reach
50k samples. DDPO experiments were conducted on a v4-64 TPU pod, and took approximately 4
hours to reach 50k samples. For the VLM-based reward function, LLaVA inference was conducted
on a DGX machine with 8 80Gb A100 GPUs.

B.5 FULL HYPERPARAMETERS

DDPOIS DDPOSF RWR RWRsparse

Diffusion Denoising steps (T ) 50 50 50 50
Guidance weight (w) 5.0 5.0 5.0 5.0

Optimization

Optimizer AdamW AdamW AdamW AdamW
Learning rate 1e-5 1e-5 1e-5 1e-5
Weight decay 1e-4 1e-4 1e-4 1e-4
β1 0.9 0.9 0.9 0.9
β2 0.999 0.999 0.999 0.999
ϵ 1e-8 1e-8 1e-8 1e-8
Gradient clip norm 1.0 1.0 1.0 1.0

RWR

Inverse temperature (β) - - 0.2 -
Percentile - - - 0.9
Batch size - - 128 128
Gradient updates per iteration - - 400 400
Samples per iteration - - 10k 10k

DDPO

Batch size 64 256 - -
Samples per iteration 256 256 - -
Gradient updates per iteration 4 1 - -
Clip range 1e-4 - - -
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B.6 LIST OF 45 COMMON ANIMALS

This list was used for experiments with the aesthetic quality reward function and the VLM-based
reward function.

cat dog horse monkey rabbit zebra spider bird sheep
deer cow goat lion tiger bear raccoon fox wolf

lizard beetle ant butterfly fish shark whale dolphin squirrel
mouse rat snake turtle frog chicken duck goose bee

pig turkey fly llama camel bat gorilla hedgehog kangaroo

APPENDIX C ADDITIONAL DESIGN DECISIONS

C.1 CFG TRAINING

Recent text-to-image diffusion models rely critically on classifier-free guidance (CFG) (Ho &
Salimans, 2021) to produce perceptually high-quality results. CFG involves jointly training the
diffusion model on conditional and unconditional objectives by randomly masking out the context c
during training. The conditional and unconditional predictions are then mixed at sampling time using
a guidance weight w:

ϵ̃θ(xt, t, c) = wϵθ(xt, t, c) + (1− w)ϵθ(xt, t) (3)

where ϵθ is the ϵ-prediction parameterization of the diffusion model (Ho et al., 2020) and ϵ̃θ is the
guided ϵ-prediction that is used to compute the next denoised sample.

For reinforcement learning, it does not make sense to train on the unconditional objective since the
reward may depend on the context. However, we found that when only training on the conditional
objective, performance rapidly deteriorated after the first round of finetuning. We hypothesized that
this is due to the guidance weight becoming miscalibrated each time the model is updated, leading to
degraded samples, which in turn impair the next round of finetuning, and so on. Our solution was to
choose a fixed guidance weight and use the guided ϵ-prediction during training as well as sampling.
We call this procedure CFG training. Figure 8 shows the effect of CFG training on RWRsparse; it has
no effect after a single round of finetuning, but becomes essential for subsequent rounds.
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Figure 8 (CFG training) We run the RWRsparse algorithm while optimizing only the conditional ϵ-
prediction (without CFG training), and while optimizing the guided ϵ-prediction (with CFG training).
Each point denotes a diffusion model update. We find that CFG training is essential for methods that
do more than one round of interleaved sampling and training.

16



0 10k 20k 30k

Reward Queries

4.2

4.4

4.6

4.8

5.0

5.2
L

A
IO

N
A

es
th

et
ic

S
co

re

Aesthetic Quality

0 10k 20k 30k

Reward Queries

−150

−100

−50

0

N
eg

at
iv

e
F

il
es

iz
e

(k
b

)

JPEG Compressibility Samples per Iteration (RWR)

256

512

1,024

2,048

4,096

8,192

16,384

Samples per Iteration (DDPOIS)

256

Figure 9 (RWR interleaving ablation) Ablation over the number of samples collected per iteration
for RWR. The number of gradient updates per iteration remains the same throughout. We find that
more frequent interleaving is beneficial up to a point, after which it causes performance degradation.
However, RWR is still unable to match the asymptotic performance of DDPO at any level of
interleaving.

C.2 INTERLEAVING

There are two main differences between DDPO and RWR, as compared in Section 6.1: the objective
(DDPO uses the policy gradient) and the data distribution (DDPO is significantly more on-policy,
collecting 256 samples per iteration as opposed to 10,000 for RWR). This choice is motivated by
standard RL practice, in which policy gradient methods specifically require on-policy data (Sutton
et al., 1999), whereas RWR is designed to work in on off-policy data (Nair et al., 2020) and is known
to underperform other algorithms in more online settings (Duan et al., 2016).

However, we can isolate the effect of the data distribution by varying how interleaved the sampling
and training are in RWR. At one extreme is a single-round algorithm (Lee et al., 2023), in which N
samples are collected from the pretrained model and used for finetuning. It is also possible to run
k rounds of finetuning each on N

k samples collected from the most up-to-date model. In Figure 9,
we evaluate this hyperparameter and find that increased interleaving does help up to a point, after
which it causes performance degradation. However, RWR is still unable to match the asymptotic
performance of DDPO at any level of interleaving.

APPENDIX D QUANTITATIVE RESULTS FOR GENERALIZATION

In Section 6.3, we presented qualitative evidence of both the aesthetic quality model and the image-
prompt alignment model generalizing to prompts that were unseen during finetuning. In Figure 10, we
provide an additional quantitative analysis of generalization with the aesthetic quality model, where
we measure the average reward throughout training for several prompt distributions. In accordance
with the qualitative evidence, we see that the model generalizes very well to unseen animals, and
everyday objects to a lesser degree.

APPENDIX E MORE SAMPLES

Figure 11 shows qualitative samples from the baseline RWR method. Figure 12 shows more samples
on seen prompts from DDPO finetuning with the image-prompt alignment reward function. Figure 13
shows more examples of generalization to unseen animals and everyday objects with the aesthetic
quality reward function. Figure 14 shows more examples of generalization to unseen subjects and
activities with the image-prompt alignment reward function.
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list of 50 objects (e.g. toaster, chair, coffee cup, etc.).
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Figure 11 (RWR samples)

18



a hedgehog riding a bike a dog riding a bike

a lizard riding a bike a shark washing dishes

a frog washing dishes a monkey washing dishes

Figure 12 (More image-prompt alignment samples)

19



Pretrained (New Animals) Aesthetic Quality (New Animals)

Pretrained (Non-Animals) Aesthetic Quality (Non-Animals)

Figure 13 (Aesthetic quality generalization)
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a capybara washing dishes a snail playing chess

a dog doing laundry a giraffe playing basketball

a parrot driving a car a duck taking an exam

a robot fishing in a lake a horse typing on a keyboard

a rabbit sewing clothes a tree riding a bike

a car eating a sandwich an apple playing soccer

Figure 14 (Image-prompt alignment generalization)
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